Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Plants (Basel) ; 12(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176795

RESUMO

Hypersaline environments occur naturally worldwide in arid and semiarid regions or in artificial areas where the discharge of highly saline wastewaters, such as produced water (PW) from oil and gas industrial setups, has concentrated salt (NaCl). Halophytes can tolerate high NaCl concentrations by adopting ion extrusion and inclusion mechanisms at cell, tissue, and organ levels; however, there is still much that is not clear in the response of these plants to salinity and completely unknown issues in hypersaline conditions. Mechanisms of tolerance to saline and hypersaline conditions of four different halophytes (Suaeda fruticosa (L.) Forssk, Halocnemum strobilaceum (Pall.) M. Bieb., Juncus maritimus Lam. and Phragmites australis (Cav.) Trin. ex Steudel) were assessed by analysing growth, chlorophyll fluorescence and photosynthetic pigment parameters, nutrients, and sodium (Na) uptake and distribution in different organs. Plants were exposed to high saline (257 mM or 15 g L-1 NaCl) and extremely high or hypersaline (514, 856, and 1712 mM or 30, 50, and 100 g L-1 NaCl) salt concentrations in a hydroponic floating culture system for 28 days. The two dicotyledonous S. fruticosa and H. strobilaceum resulted in greater tolerance to hypersaline concentrations than the two monocotyledonous species J. maritimus and P. australis. Plant biomass and major cation (K, Ca, and Mg) distributions among above- and below-ground organs evidenced the osmoprotectant roles of K in the leaves of S. fruticosa, and of Ca and Mg in the leaves and stem of H. strobilaceum. In J. maritimus and P. australis the rhizome modulated the reduced uptake and translocation of nutrients and Na to shoot with increasing salinity levels. S. fruticosa and H. strobilaceum absorbed and accumulated elevated Na amounts in the aerial parts at all the NaCl doses tested, with high bioaccumulation (from 0.5 to 8.3) and translocation (1.7-16.2) factors. In the two monocotyledons, Na increased in the root and rhizome with the increasing concentration of external NaCl, dramatically reducing the growth in J. maritimus at both 50 and 100 g L-1 NaCl and compromising the survival of P. australis at 30 g L-1 NaCl and over after two weeks of treatment.

2.
Life (Basel) ; 12(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36295000

RESUMO

Background: Recent studies evidence that blue-LED-light irradiation can modulate cell responses in the wound healing process within 24 h from treatment. This study aims to investigate blue-light (410-430 nm) photobiomodulation used in a murine wound model within six days post-treatment. Methods: A superficial wound was made in 30 CD1 male mice. The injuries were treated with a blue LED light (20.6 J/cm2), and biopsies were collected at 24, 72, and 144 h. Histology, fluorescence analysis, and advanced microscopy techniques were used. Results: We can observe an increase in the cellular infiltrate response, and in mast-cell density and their degranulation index correlated to the expression of the major histocompatibility complex after 24 h. Furthermore, after six days, the vessel density increases with the expression of the platelet-derived growth factor in the mast cells. Finally, collagen deposition and morphology in the treated wounds appear more similar to unwounded skin. Conclusions: Blue-light photobiomodulation stimulates several cellular processes that are finely coordinated by mast cells, leading to more rapid wound healing and a better-recovered skin morphology.

3.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564323

RESUMO

In spite of an extensive body of academic initiatives and innovative products, the toolkit of wound dressing has always revolved around a few common concepts such as adhesive patches and stitches and their variants. Our work aims at an alternative solution for an immediate restitutio ad integrum of the mechanical functionality in cutaneous repairs. We describe the fabrication and the application of electrospun mats of bioactive nanofibers all made of biocompatible components such as a natural polysaccharide and a cyanine dye for use as laser-activatable plasters, resembling the ultrastructure of human dermis. In particular, we investigate their morphological features and mechanical moduli under conditions of physiological relevance, and we test their use to bind a frequent benchmark of connective tissue as rabbit tendon and a significant case of clinical relevance as human dermis. Altogether, our results point to the feasibility of a new material for wound dressing combining translational potential, strength close to human dermis, extensibility exceeding 15% and state-of-art adhesive properties.

4.
Sci Rep ; 12(1): 6223, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418671

RESUMO

Paper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may leverage on the most recent advances in materials science and data processing. In particular, we target an amplifiable DNA rather than a protein analyte, and we replace gold nanospheres with anisotropic nanorods, which are intrinsically brighter by a factor of ~ 10, and multiplexable. By comparison with a gold-standard method for dot-blot readout with digoxigenin, we show that gold nanorods entail much faster and easier processing, at the cost of a higher limit of detection (from below 1 to 10 ppm in the case of plasmid DNA containing a target transgene, in our current setup). In addition, we test a complete workflow to acquire and process photographs of dot-blot membranes with custom-made hardware and regression tools, as a strategy to gain more analytical sensitivity and potential for quantification. A leave-one-out approach for training and validation with as few as 36 sample instances already improves the limit of detection reached by the naked eye by a factor around 2. Taken together, we conjecture that the synergistic combination of new materials and innovative tools for data processing may bring the analytical sensitivity of paper-based biosensors to approach the level of lab-grade molecular tests.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Nanotubos , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , DNA , Ouro , Humanos , SARS-CoV-2/genética
5.
Plant Physiol Biochem ; 171: 169-181, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999508

RESUMO

Physiological studies conducted mainly in metropolitan areas demonstrated that urban environments generate stressful conditions for plants. However, less attention has been paid to plant response to urban conditions in small cities. Here, we evaluated to what extent the health and physiological functions of some Mediterranean urban species [Quercus ilex L., Nerium oleander L. and Pittosporum tobira (Thunb.) W.T. Aiton] were impacted by urban and peri-urban conditions in Pisa (Italy), a small medieval city with narrow streets that impede efficient public transport causing oversized private transport. Experimental period spanned from late-summer to winter in concomitance with the sharp increase in air pollutants. Climate and air quality, soil physical and chemical properties, and plant physiological traits including leaf gas exchanges, chlorophyll fluorescence and leaf pigments were assessed. In soil, the organic carbon affected aggregates and water stability and the concentrations of some micro-elements decreased in winter. Air pollutants impaired leaf gas exchanges and photochemical processes at photosystem II, depending on species, season, and urban conditions. Shrubs were more susceptible than the tree species, highlighting that the latter adapted better to pollutants along an urban-peri-urban transect in Mediterranean environments. This study gives information on the physiological adaptability of some of the most frequent Mediterranean urban species to stressful conditions and demonstrated that, even in a small city, urban conditions influence the physiology and development of vegetation, affecting the plant health status and its ability to provide key ecosystem services.


Assuntos
Poluentes Atmosféricos , Quercus , Poluentes Atmosféricos/análise , Ecossistema , Folhas de Planta/química , Solo , Árvores
6.
Anal Bioanal Chem ; 413(24): 6171-6182, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34278523

RESUMO

Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.


Assuntos
DNA/análise , Vidro , Análise Espectral Raman/métodos , DNA/química , Fluorescência , Troca Iônica , Microscopia de Força Atômica , Hibridização de Ácido Nucleico
7.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209537

RESUMO

Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200106

RESUMO

The use of SERS for real-world bioanalytical applications represents a concrete opportunity, which, however, is being largely delayed by the inadequacy of existing substrates used to collect SERS spectra. In particular, the main bottleneck is their poor usability, as in the case of unsupported noble metal colloidal nanoparticles or because of the need for complex or highly specialized fabrication procedures, especially in view of a large-scale commercial diffusion. In this work, we introduce a graphene paper-supported plasmonic substrate for biodetection as obtained by a simple and rapid aerosol deposition patterning of silver nanowires. This substrate is compatible with the analysis of small (2 µL) analyte drops, providing stable SERS signals at sub-millimolar concentration and a detection limit down to the nanogram level in the case of hemoglobin. The presence of a graphene underlayer assures an even surface distribution of SERS hotspots with improved stability of the SERS signal, the collection of well-resolved and intense SERS spectra, and an ultra-flat and photostable SERS background in comparison with other popular disposable supports.

9.
Biomedicines ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466557

RESUMO

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here, we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts from healthy skin and keratinocytes. Different light doses (3.43, 6.87, 13.7, 20.6, 30.9 and 41.2 J/cm2) were used to treat the cells, evidencing inhibitory and stimulatory effects following a biphasic dose behavior. Electrophysiology was used to investigate the effects on membrane currents: healthy fibroblasts and keratinocytes showed no significant differences between treated and not treated cells. Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation: a significant decrease in peak intensity of healthy fibroblast was evidenced, while it is less pronounced in keratinocytes. In conclusion, we observed that the blue LED light can be used to modulate metabolism and proliferation of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419130

RESUMO

Plasmonic particles as gold nanorods have emerged as powerful contrast agents for critical applications as the photoacoustic imaging and photothermal ablation of cancer. However, their unique efficiency of photothermal conversion may turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. Here, we outline the main ideas behind the technology of photoacoustic imaging and the use of relevant contrast agents, with a main focus on gold nanorods. We delve into the processes of premelting and reshaping of gold nanorods under illumination with optical pulses of a typical duration in the order of few ns, and we present different approaches to mitigate this issue. We undertake a retrospective classification of such approaches according to their underlying, often implicit, principles as: constraining the initial shape; or speeding up their thermal coupling to the environment by lowering their interfacial thermal resistance; or redistributing the input energy among more particles. We discuss advantages, disadvantages and contexts of practical interest where one solution may be more appropriate than the other.

11.
Magn Reson Imaging ; 76: 1-7, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33161101

RESUMO

PURPOSE: The aim of this work is to test the use of aqueous solutions of Ficoll®**, a highly branched polymer displaying crowding properties, to build a phantom suitable for Diffusion Weighted Imaging (DWI) in Magnetic Resonance Imaging (MRI). METHODS: We developed a test object made of a cylindrical plastic container with a precise geometrical arrangement suitable for measuring several samples at the same time. The container was designed to host single vials with variable geometry and number, and to fit inside common commercial head coils for MRI scanners. In our experiments, vials were filled with 8 aqueous solutions of Ficoll 70 and Ficoll 400 spanning a range of polymer concentration from 5 to 30% by weight. Vials containing ultra-pure water were also used as reference. Experiments were performed on both 1.5 and 3 T clinical scanners (GE, Philips and Siemens), under the conditions of a standard clinical examination. RESULTS: The geometry of the phantom provided reduced imaging artifacts, especially image distortions at magnetic interfaces. We found that the Apparent Diffusion Coefficient (ADC) varied in the range of 0.00125-0.00223 mm2/s and decreased with Ficoll concentration. ADC vs Ficoll concentration exhibited a linear trend. Results were consistent over time and among different MRI clinical scanners, showing an average variability of 3% at 1.5 T and of 7.5% at 3 T. Moreover, no substantial difference was found between Ficoll 70 and 400. By varying Ficoll concentration, ADC can be modulated to approach tissue-mimicking values. Preliminary results for relaxation measurements proved that both T1 and T2 decreased with Ficoll concentration in the ranges 1.3-2.4 s and 150-800 ms respectively. CONCLUSIONS: In this work, we propose a 3D phantom design based on the widespread crowding agent Ficoll, which is suitable for DWI quality assurance purposes in MRI acquisitions. Aqueous Ficoll solutions provide good performance in terms of stability, ease of preparation, and safety.


Assuntos
Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/normas , Ficoll , Imagens de Fantasmas , Humanos , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes
12.
Biomedicines ; 8(12)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291338

RESUMO

Keloids are an exuberant response to wound healing, characterized by an exaggerated synthesis of collagen, probably due to the increase of fibroblasts activity and to the reduction of their apoptosis rate: currently no standard treatments or pharmacological therapies are able to prevent keloid recurrence. To reach this goal, in recent years some physical treatments have been proposed, and among them the PhotoBioModulation therapy (PBM). This work analyses the effects of a blue LED light irradiation (410-430 nm, 0.69 W/cm2 power density) on human fibroblasts, isolated from both keloids and perilesional tissues. Different light doses (3.43-6.87-13.7-20.6-30.9 and 41.2 J/cm2) were tested. Biochemical assays and specific staining were used to assess cell metabolism, proliferation and viability. Micro-Raman spectroscopy was used to explore direct effects of the blue LED light on the Cytochrome C (Cyt C) oxidase. We also investigated the effects of the irradiation on ionic membrane currents by patch-clamp recordings. Our results showed that the blue LED light can modulate cell metabolism and proliferation, with a dose-dependent behavior and that these effects persist at least till 48 h after treatment. Furthermore, we demonstrated that the highest fluence value can reduce cell viability 24 h after irradiation in keloid-derived fibroblasts, while the same effect is observed 48 h after treatment in perilesional fibroblasts. Electrophysiological recordings showed that the medium dose (20.6 J/cm2) of blue LED light induces an enhancement of voltage-dependent outward currents elicited by a depolarizing ramp protocol. Overall, these data demonstrate the potentials that PBM shows as an innovative and minimally-invasive approach in the management of hypertrophic scars and keloids, in association with current treatments.

13.
Mater Sci Eng C Mater Biol Appl ; 117: 111338, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919687

RESUMO

The systemic delivery of composite nanoparticles remains an outstanding challenge in cancer nanomedicine, and the principal reason is a complex interplay of biological barriers. In this regard, adaptive cell transfer may represent an alternative solution to circumvent these barriers down to the tumor microenvironment. Here, tumor-tropic macrophages are proposed as a tool to draw and vehiculate modular nanoparticles integrating magnetic and plasmonic components. The end result is a bionic shuttle that exhibits a plasmonic band within the so-called therapeutic window arising from as much as 40 pg Au per cell, magnetization in the order of 150 pemu per cell, and more than 90% of the pristine viability and chemotactic activity of its biological component, until at least two days of preparation. Its synergistic combination of plasmonic, magnetic and tumor-tropic functions is assessed in vitro for applications as magnetic guidance or sorting, with a propulsion around 4 µm s-1 for a magnetic gradient of 0.8 T m-1, the optical hyperthermia of cancer, with stability of photothermal conversion to temperatures exceeding 50∘C, and the photoacoustic imaging of cancer under realistic conditions. These results collectively suggest that a bionic design may be a promising roadmap to reconcile the efforts for multifunctionality and targeted delivery, which are both key goals in nanomedicine.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Biônica , Ouro , Humanos , Magnetismo , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
14.
J Biophotonics ; 13(9): e202000135, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542912

RESUMO

We disclose the use of hybrid materials featuring Au/Ag core/shell nanorods in porous chitosan/polyvinyl alcohol scaffolds for applications in tissue engineering and wound healing. The combination of Au and Ag in a single construct provides synergistic opportunities for optical activation of functions as near infrared laser tissue bonding, and remote interrogation to return parameters of prognostic relevance in wound healing monitoring. In particular, the bimetallic component ensures optical tunability, enhanced shelf life and photothermal stability, serves as a reservoir of germicidal silver cations, and changes in near-infrared and visible color according to the environmental level of oxidative stress. At the same time, the polymeric blend is ideal to bind connective tissue upon photothermal activation, and to support fabrication processes that provide high porosity, such as electrospinning, thus putting all the premises for cellular repopulation and antimicrobial protection.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro , Hidrogéis , Prata , Cicatrização
15.
J Colloid Interface Sci ; 578: 358-365, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535418

RESUMO

Plasmonic particles have been proposed for a broad variety of optical and hybrid applications, including the photothermal ablation and photoacoustic imaging of cancer, or their integration in photonic sensors. Here, we address the effect of thermal resistance at the gold-water interface, or Kapitza resistance, on the performance of photoacoustic conversion of gold nanorods. Our findings point to possible strategies for the optimization of plasmonic particles as contrast agents for imaging, or even as transducers for biosensing. We perform numerical simulations that project a simultaneous increase of efficiency and stability of photoacoustic conversion with a decrease of Kapitza resistance. We suggest an effective approach to modulate Kapitza resistance by including underresolved features as roughness or the presence of adsorbates. Inspired by this idea, we synthesize a rough variant of gold nanorods by the deposition and galvanic replacement of a silver shell, where roughness provides higher photoacoustic signals by about 70% and damage thresholds by 120%. In addition, we coat our particles with a protein corona and find a decrease of photoacoustic signals with shell thickness, which may inspire new solutions for biosensors based on a mechanism of photoacoustic transduction. Both our findings are consistent with an effective modulation of Kapitza resistance, which decreases upon roughening, due to an underlying increase of specific surface area, and increases upon coating with a protein shell that may act as a thermal insulation. We discuss possible directions to gain more advantage of our concept for topical applications at the crossroads of plasmonics, biomedical optics and biosensing.


Assuntos
Nanotubos , Técnicas Fotoacústicas , Diagnóstico por Imagem , Ouro , Análise Espectral
16.
J Mater Chem B ; 8(8): 1629-1639, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011615

RESUMO

Optical detection techniques based on surface enhanced Raman spectroscopy (SERS) are a powerful tool for biosensing applications. Meanwhile, due to technological advances, different approaches have been investigated to integrate SERS substrates on the tip of optical fibres for molecular probing in liquids. To further demonstrate the perspectives offered by SERS-on-fiber technology for diagnostic purposes, in this study, novel cap-shaped SERS sensors for reversible coupling with customized multimodal probes were prototyped via low-cost polymer casting of polydimethylsiloxane (PDMS) and further assembly of gold nanoparticles (Au NPs) of varied sizes and shapes. To demonstrate the feasibility of liquid sensing with cap sensors using backside illumination and detection, the spectra of rhodamine were acquired by coupling the caps with the fiber. As expected by UV-vis, the highest SERS efficiency was observed for NP-decorated substrates with plasmonic properties in resonance with the irradiation wavelength. Then, SERS biosensors for the specific detection of amyloid-ß (Aß) neurotoxic biomarkers were realized by covalent grafting of Aß antibodies. As attested by fluorescence images and SERS measurements, the biosensors successfully exhibited enhanced Aß affinity compared to the bare sensors without ligands. Finally, these versatile (bio)sensors are a powerful tool to transform any milli-sized fibers into functional (bio)sensing platforms with plasmonic and biochemical properties tailored for specific applications.


Assuntos
Peptídeos beta-Amiloides/análise , Técnicas Biossensoriais/métodos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/imunologia , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Biomarcadores/análise , Dimetilpolisiloxanos/química , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanoestruturas/química , Fibras Ópticas , Rodaminas/química , Análise Espectral Raman
17.
Ecotoxicol Environ Saf ; 190: 110095, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869714

RESUMO

The wide use of nanoparticles (NPs), gives concern about their possible negative implications in the environment and living organisms. In particular, titanium dioxide (TiO2) NPs are accumulated in biosolids (Bs) coming from wastewater treatment plants, which in turn are used as farm soil amendments and are becoming an important way of NPs entrance in the terrestrial ecosystems. In this study, to simulate a low and cumulative load of TiO2 NPs, 80 and 800 mg TiO2per Kg of soil were spiked in the Bs prior to its addition to soil. The effects of different crystal phases of TiO2 NPs (pure anatase and pure rutile or their mixture) and their non-coated bulk counterparts (larger particles) on the availability of mineral nutrients and on the status of the bacterial communities together with the nutritional status of Pisum sativum L. plants were evaluated. Results showed the reduction, to different extents, on the availability of important soil mineral nutrients (e.g. Mn 65%, Fe 20%, P 27%, averagely), in some cases size- (e.g. P) and dose-dependent. Bacterial biodiversity was also affected by the presence of high TiO2 dose in soil. The mineral nutrition of pea plants was also altered, showing the main reduction in Mn (80% in the roots and 50% in the shoots), K, Zn, P (respectively, 80, 40, and 35% in the roots), and an increase of N in the shoots, with possible consequences on the quality of the crop. The present study gives new integrated data on the effects of TiO2 NPs in the soil-plant system, on the soil health and on the nutritional quality of crops, rising new implications for future policies and human health.


Assuntos
Biossólidos , Nanopartículas/química , Poluentes do Solo/análise , Titânio/química , Produtos Agrícolas , Ecossistema , Humanos , Nutrientes , Estado Nutricional , Raízes de Plantas/efeitos dos fármacos , Solo/química
18.
RSC Adv ; 10(37): 21907-21913, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35516647

RESUMO

Raman spectroscopy assisted by localized plasmon resonances generating effective hot spots at the gaps between intertwined silver nanowires is herein adopted to unravel characteristic molecular motifs on the surface of Aß42 misfolded oligomers that are critical in driving intermolecular interactions in neurodegeneration.

20.
Biomed Opt Express ; 10(8): 3719-3730, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452970

RESUMO

The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, et al. [ Biomed. Opt. Express7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...